
DAG-Based Distributed Ledgers
Research Seminar in Cryptology

Janno Siim

June 1, 2018

Project advisor: Ahto Truu

1 Introduction

In 2008 Bitcoin [Nak09] was introduced as the first decentralized digital currency. Its core underlying
technology is the blockchain which is essentially a distributed append-only database. In particular, blockchain
solves the key issue in decentralized digital currencies – the double spending problem – which asks: “if there is
no central authority, what stops a malicious party from spending the same unit of currency multiple times”.
Blockchain solves this problem by keeping track of each transaction that has been ever made while being
robust against adversarial modifications.

Besides digital currencies, blockchain has been proposed as a solution for many other problems. In short,
it is potentially useful for any application where it should not be possible to modify data once it is stored
(append-only storage systems). Some projects, such as Ethereum 1, go even a step further from plain data
storage and allow to run so-called smart contracts, which are programs running on top of blockchain. In this
case blockchain guarantees that a program is executed correctly in a distributed and untrusted setting.

In more detail, Bitcoin blockchain works as follows. Transaction are stored in blocks that are linked in a chain
through hashing, that is, each block contains a hash of the previous block. Blocks themselves are generated
by miners that collect and verify users’ transactions. Transaction fees and block discovery rewards act as
incentive for miners to participate.

Security of the Bitcoin blockchain comes from proof-of-work (PoW) puzzle solving – block is considered to
be valid if it contains a solution to a computationally difficult puzzle. More precisely, miners needs to include
a nonce (a small bitstring) to the block such that the hash of the block begins with a certain number of
zeros. Finding such nonces is believed to be computationally difficult task.

Honest nodes always extend the longest valid chain; if an attacker wishes to modify a block, then it needs
to construct a longer valid chain in order to convince honest nodes. Garay et al. [GKL17] show that Bitcoin
blockchain realizes security definition of a robust transaction ledger given that adversary controls less than
majority of the hashing power. In the following, we will also informally refer to blockchain and other
analogues systems as transaction ledgers.

Problems with Bitcoin. Although Bitcoin blockchain is sufficient to implement a distributed digital
currency, still a number of problems inhibit its wide-scale adoption. We mention a few of the more prominent
issues:

1https://www.ethereum.org/

1

https://www.ethereum.org/

1. Scalability – As of 2018, Bitcoin has an average throughput of 7 transaction per second, whereas, for
example, Visa credit card system processes 2000 transaction per second [CDE+16]. This means that
Bitcoin cannot handle massive world-wide adoption.

2. Transaction confirmation – Mining a Bitcoin block (and hence getting a transaction confirmation) takes
approximately 10 minutes 2. For many real-life transactions, such as buying food from a supermarket,
this is too long.

3. Transaction fees – Bitcoin transaction fees are high enough that it is unreasonable to make micro-
payments.

4. Energy consumption – It has been estimated that the energy consumption of Bitcoin is comparable to
energy consumption of Ireland [OM14].

5. Privacy – Although Bitcoin accounts are not necessarily associated with the owner’s real-life identity,
since every transaction is public, it is often quite easy to deanonymize accounts through association
(e.g., same account bought coffee at place X at time Y and later also made a transaction to a known
drug dealer).

6. Centralization – Bitcoin is not as decentralized as was originally hoped. Large groups of miners have
decided to work together in mining pools which allows them to share the rewards and thus guarantees
a more steady income. Moreover, as of now most of the hashing power has concentrated to China 3

opening up the possibility that Chinese government can significantly influence the behavior of miners.

7. Usability – It is difficult for an average user to store a secret key in convenient and secure manner. If
the key is lost or stolen, then, distinct from traditional banking systems, there is no central authority
that can help the user by closing the account or resetting the key.

Alternative ledgers. A myriad of alternative blockchains and cryptocurrencies have been proposed that
try to address those issues. For example, problem of energy consumption is tackled by Cardano4 cryptocur-
rency [KRDO17] by using a proof-of-stake type blockchain rather than the PoW blockchain used in Bitcoin;
Zcash5 [MGGR13] solves the privacy problem by introducing zero-knowledge proofs to blockchain.

In this report we review two distributed ledgers that claim to solve many of the above mentioned issues. These
systems are IOTA6 and Swirlds7. Common feature among them is the use of directed acyclic graphs (DAGs)
as part of the consensus mechanism, although in quite different ways. We use white papers [Pop17, Bai16]
and public documentation [IOT] as the main source of information.

For sake of completeness we also mention some other DAG-like distributed ledgers:

• Sompolinsky and Zohar et al. have studied tree-like and DAG-like blockchains in a series of pa-
pers [SZ15, LSZ15, SLZ16, SZ18].

• ByteBall 8 is a cryptocurrency that uses DAGs in quite similar way to IOTA.

• Dagcoin9 is an Estonian DAG-based cryptocurrency. Some sources claim it to be a fraud10.

2To be confident that transaction is included, several more blocks should be mined. Hence, it might actually take an hour.
3https://www.buybitcoinworldwide.com/mining/pools/
4https://www.cardano.org/en/home/
5https://z.cash/
6https://iota.org/
7https://www.swirlds.com/
8https://byteball.org/
9https://dagcoin.org/

10See https://geenius.ee/uudis/tuhjad-lubadused-eesti-oma-kruptorahaga-kaasa-lainud-investorid-vihaseks-ajanud/,
https://ethanvanderbuilt.com/2018/01/15/dagcoin-scam-yes-opinion/

2

https://www.buybitcoinworldwide.com/mining/pools/
https://www.cardano.org/en/home/
https://z.cash/
https://iota.org/
https://www.swirlds.com/
https://byteball.org/
https://dagcoin.org/
https://geenius.ee/uudis/tuhjad-lubadused-eesti-oma-kruptorahaga-kaasa-lainud-investorid-vihaseks-ajanud/
https://ethanvanderbuilt.com/2018/01/15/dagcoin-scam-yes-opinion/

2 IOTA

IOTA is a DAG-based cryptocurrency designed for Internet-of-Things (IoT) devices and it claims to solve
many of the problems in existing distributed ledgers [IOT]:

1. Scalability – It allows many nodes to verify transactions in parallel.

2. Transaction fees – It has none.

3. Decentralization – All users validate transaction on equal grounds and there is no mining. Hence, we
should not expect to see the same issue of concentration of power as in Bitcoin.

4. Quantum resistance – They claim that IOTA is secure against quantum adversaries.

Instead of a linear blockchain, this system uses a DAG data structure called tangle where vertices that are
called sites correspond to transactions and edges correspond to transaction approvals. More precisely, if
user issues a transaction, as a new site u, then it must pick two existing sites v, w and approve transactions
at those sites. This corresponds to adding directed edges (u, v) and (u,w) to the tangle. Finally, when the
node has approved two transaction, then it will also solve a small PoW puzzle (38 hash function evaluations
on average) similar to Bitcoin. The precise approval procedure seems to be unspecified in the white paper.
Initial vertex in the tangle is called genesis and it contains all the currency in the system.

Yet to be proved sites in the tangle are called tips. Nodes are allowed to choose any sites for verification,
but honest nodes follow the tip selection algorithm which roughly works as follows: node does a weighted
random walk, starting from the genesis, until it reaches a tip. Weight of the site depends on the number of
approvals that it previously received.

Currently the system contains a coordinator node, run by IOTA Foundation, that confirms the transactions.
More precisely, the coordinator issues a milestone transaction every few minutes and all the transaction it
references are considered to be confirmed. Transactions that are not referenced by any milestone are not
considered to be confirmed. However, coordinator is supposed to be only a temporary solution and eventually
IOTA should work in a fully distributed manner.

White paper [Pop17] describes a Markov-chain Monte-Carlo algorithm which can probabilistically check the
transaction confirmation (without a coordinator). It works by running the tip selection algorithm n times
while checking how many of the selected tips reference a given transaction. If κ out of n tips reference the
transaction, then it is confirmed with confidence κ/n.

To create an IOTA account the user generates a private seed from which the private key and public address
are derived. Since IOTA uses, supposedly quantum-secure, Winternitz one-time signatures [Mer90], then
each private key (and address) can only be used once. Transactions in IOTA are called bundles that (among
other details) contain signed input addresses and output address of the recipient.

It should be also mentioned that IOTA uses ternary system rather than binary. To the best of our knowledge,
there is no official IOTA documentation explaining this design choice. However, one of the founders of IOTA
has claimed on Reddit11 that processors can run more efficiently on ternary system. Of course, since currently
no such processors are widely available, then there has to be conversion to binary which likely makes it less
efficient than a native binary system, not to mention the added complexity of designing everything in a new
numeral system.

IOTA is open-source 12 except for the coordinator node that is kept closed-source, supposedly for copy-
protection reasons. IOTA is not patented.

11https://www.reddit.com/r/ethereum/comments/696iln/when_is_ethereum_going_to_run_in_to_serious/dh4jtgy/
12https://github.com/iotaledger

3

https://www.reddit.com/r/ethereum/comments/696iln/when_is_ethereum_going_to_run_in_to_serious/dh4jtgy/
https://github.com/iotaledger

2.1 Security

Next we try to understand the security guarantees of the tangle by following the IOTA white paper [Pop17].

Firstly, the white paper does not state any kind of security definition that the tangle should satisfy. In
Section 3 they do identify rate of tip growth as an important problem to study. However, this analysis is
done under assumption that do not seem realistic in practice.

Here are some of the assumptions made in [Pop17]:

• Transactions are issued by a large number of roughly independent entities.

• [Transaction] rate remains constant in time.

• Any node, at the moment when it issues a transaction, observes not the actual state of the tangle, but
the one exactly h time units ago.

• All devices have approximately the same computing power.

Taking the last assumption as an example: it seems unjustified to assume that all devices have the same
computing power. Since the main application of IOTA are IoT devices, then most of the devices will have low
computing power. Then it seems quite easy for an attacker to find a computing device with a significantly
higher computing power and connect it to the permissionless IOTA network.

Section 4 of the white paper considers some concrete attacks and the ways to overcome them. However,
solutions to those attacks seem unconvincing.

In particular, it remains unclear what stops a computationally powerful adversary from conducting a double
spending attack as follows: adversary can use its coin and wait until it receives the goods, then it can make
a second transaction with the same coin and confirm it by making many small transaction, perhaps under
multiple different accounts. Attacks of this type where adversary floods the systems with new accounts are
sometimes called Sybil attacks.

Other consensus algorithms have a clear answer to this problem. In PoW blockchains this is impossible
since adversary should have more computational power than rest of the system. Similarly in proof of stake
blockchains adversary should obtain majority of stake (currency) to perform this attack. Permissioned
consensus protocols simply restrict the adversary from adding new nodes to the system.

To the best of our understanding, IOTA team claims that it is the small amount of PoW (38 hashings on
average) that stops such an attack13.

2.2 Criticism

IOTA has attracted criticism from several different directions.

Curl vulnerability. In 2017, Heilman et al. [HNDV17] discovered a vulnerability of the in-house hash
function Curl used in IOTA. Using differential cryptanalysis they were able to find hash collisions on com-
modity hardware under just a few minutes14. Under specific circumstances this attack even allowed to steal
funds. Since then IOTA team has updated the hash function to Kerl15 which is based on Keccak hash
function (SHA-3). Currently no similar attacks are known.

13 http://www.tangleblog.com/2017/07/10/is-double-spending-possible-with-iota/ actually leaves the impression that
double spending is theoretically possible, but just technically difficult to do in practice.

14https://medium.com/@neha/cryptographic-vulnerabilities-in-iota-9a6a9ddc4367
15https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md

4

http://www.tangleblog.com/2017/07/10/is-double-spending-possible-with-iota/
https://medium.com/@neha/cryptographic-vulnerabilities-in-iota-9a6a9ddc4367
https://github.com/iotaledger/kerl/blob/master/IOTA-Kerl-spec.md

Coordinator. As of beginning of 2018, IOTA relies on centralized coordinator, making it (at minimum)
a single point of failure. IOTA team claims that as the networks grows, they are able to permanently turn
off the coordinator. Others have expressed doubt that IOTA will ever reach that phase. (See [Wal17] and
comments below for one such debate.) Source code of the coordinator node is not publicly available, as was
mentioned above.

Replay vulnerability. Recently a new potential vulnerability was discovered by Joseph Rebstock [Reb17].
After receiving funds through a transaction, adversary can resend the same transaction multiple times and
drain the address. However, this attack relies on more funds being on the address than is needed for a
single transaction. Using the same address for multiple transactions is discouraged by the IOTA team and
therefore under normal circumstances the address would be empty once a transaction is made. As such,
IOTA team does not consider this to be a legitimate vulnerability and has no intentions of changing the
protocol behavior16.

3 Swirlds

Swirlds is a platform meant for creating distributed applications in a potentially malicious environment. Core
component of Swirlds is the hashgraph consensus algorithm [Bai16]. This allows nodes to collectively agree
on the order of an evergrowing sequence of transactions. Such an approach, which is called state machine
replication [Sch90], can be used to implement cryptocurrencies or – more generally – robust distributed
applications i.e. smart contracts.

By default, Swirlds is a permissioned distributed ledger in the sense that not anyone can freely join the
system, although the white paper informally discusses extensions to the permissionless setting using proof of
stake. Correspondingly, marketing of Swirlds is mainly oriented towards businesses, rather than individuals,
which is more compatible with the permissioned setting.

Swirlds answers the problems of Bitcoin as follows:

1. Scalability – It removes proof of work.

2. Decentralization – Each node in the system has equal voting rights. Although, since it is foremost a
permissioned ledger, then some amount of centralization is inherent.

We follow the white paper [Bai16] and only focus on the novel hashgraph consensus algorithm leaving aside
other details of Swirlds.

Permissioned setting makes the hashgraph consensus more similar to classical Byzantine consensus proto-
cols [BO83, DLS88, Lam98, CL99] than the recent blockchain protocols. Namely, such protocols rely on each
node having knowledge of all other nodes in the system. The white paper does not directly say or analyze
whether hashgraph consensus protocol allows to add nodes after the beginning of the protocol, but it seems
to be implied that it is possible. Otherwise proof of stake approach would not be meaningful. However, as
this setting is not analyzed in the white paper, then we leave it out from the protocol description.

We also note that there are a number of patents on the hashgraph consensus algorithm17, potentially limiting
the use for outsiders. At the time of writing, source-code for hashgraph protocol is not available, but they
have promised to make it available in the future 18.

16https://www.reddit.com/r/CryptoCurrency/comments/7yw5py/replay_attacks_in_iota_new_vulnerability_report/

dujpzk5/
17https://www.swirlds.com/ip/
18https://www.hederahashgraph.com/faq#is-the-source-code-closed-source

5

https://www.reddit.com/r/CryptoCurrency/comments/7yw5py/replay_attacks_in_iota_new_vulnerability_report/dujpzk5/
https://www.reddit.com/r/CryptoCurrency/comments/7yw5py/replay_attacks_in_iota_new_vulnerability_report/dujpzk5/
https://www.swirlds.com/ip/
https://www.hederahashgraph.com/faq#is-the-source-code-closed-source

3.1 Setting and Assumptions

Hashgraph consensus protocol is executed by a fixed set of N nodes P := {P1, . . . ,PN }. Security of the
protocol requires the following assumptions:

• Less than N/3 of the nodes are malicious.19

• There is an existentially unforgeable signature scheme and a collision resistant hash function.

• Public key infrastructure to bind each node to a specific public key of the signature scheme.

• Asynchronous communication channel meaning that all messages will be eventually delivered to the
recipient, but this might take unspecified amount of time which is controlled by the adversary. Note
that this is a very weak requirement from the channel. Many protocols require that each message is
delivered in a known time-bound ∆.

Nodes in the system can issue transactions and the hashgraph consensus protocol will guarantee that even-
tually all honest nodes assign and agree on a fixed position for each transaction in the sequence of all
transactions.

Additionally, they claim the property of fairness which roughly means that if a transaction txA reaches at
least 2N/3 of nodes before some transaction txB , then txA gets a lower position in sequence of transaction
than txB . This should make it difficult for malicious nodes to order transactions in their favour. For instance,
in an auction application it might be crucial to get a transaction accepted first.

3.2 Protocol Description

Hashgraph consensus algorithm stores transactions in (gossip) events. Let h be a collision resistant hash
function. An event created by node Pi is defined as a tuple E = (tx, ts, h(Ec), h(Er)) where tx is transaction
data, ts is a timestamp, Ec is the previous event that Pi created, and Er is the previous event that Pi

received. We allow Er (resp. Ec) to be a special ⊥ value if so far Pi has not received (resp. created) any
events. Later the ⊥ symbol is also used for some other variables to indicate that the value is unspecified.
Gossip event is signed by its creator Pi.

We call a set of events H a hashgraph if for each E := (tx, ts, hc, hr) ∈ H exists Ec, Er ∈ H ∪{⊥} such that
hc = h(Ec) and hr = h(Er). Connecting gossip events with directed edges, that is, there is an edge from Ec

and Er to E, forms a directed graph as can be seen in Figure 1.

The basis of the Hashgraph consensus algorithm is a simple gossip protocol where each node Pi ∈ P picks
a random party Pj from P \ {Pi} and sends to Pj all the events that it knows. This process is constantly
repeated. Upon receiving a gossip data, node records it by creating a new event E that additionally contains
new transaction data.

Intuitively hashgraph data structure has some very convenient properties for the consensus algorithm. For
example, if two honest nodes both have an event E ∈ H, then properties of hash function guarantee that
both nodes agree on the ancestors of E.

Basic terminology. In order to describe the consensus protocol, we introduce some basic notions related
to events and hashgraphs.

We say that an event E∗ is a parent of event E if there is a directed edge from E∗ to E. More generally,
an event E∗ is an ancestor of event E if there is a directed path from E∗ to E. By convention each event
is considered to be its own ancestor. Event E∗ is a self-ancestor of event E if E∗ is an ancestor of E and

19Clearly, in a permissionless setting adversary could cross the N/3 bound.

6

Ti
m
e

�1 �2 �3

Figure 1: Hashgraph between parties P1, P2, and P3

both E∗ and E are created by the same node. We denote the set of parents, ancestors, and self-ancestors
respectively by δ−(E), δ−a (E), and δ−sa(E).

Event E can see E∗ created by some node P if

• E∗ is an ancestor of E, and

• for any ancestor E′ of E, created by P, either E′ is an ancestor of E∗ or E∗ is an ancestor of E′.

In other words, E cannot see ancestors created by P if P has created two ancestors such that neither is each
others ancestor, i.e., P has created a fork.

Event E can strongly see E∗ if E can see more than 2N/3 events from distinct nodes such that each of those
events can see E∗.

We note that all of the above definitions hold respect to some fixed hashgraph H. Correct would be to say
that (for example) E can see E∗ in hashgraph H and so on, but we left that out for simplicity.

As will be explained later in more detail, consensus algorithm divides all events into rounds and the first
event that a party creates in each round is called a witness. Moreover, witness can be famous if it gets many
votes from witnesses of the next round. Final order of events is indicated by round received number, not to
be confused by round number. We introduce notation for these and other notions associated to an event E
(i) the round number E.rnd, (ii) the boolean E.w indicating whether E is a witness, (iii) the boolean E.f
indicating whether E is famous, (iv) the boolean vote E.vE∗ of E for E∗, (v) the self-parent E.sp, (vi) the
signature E.sig, (vii) the round received number E.rndr, (viii) the timestamp ts. Default value for all of the
above variables is ⊥.

Subprocedures. Consensus algorithm uses a number of subprocedures:

• filter(H) – filters out events from hashgraph H that do not have valid signatures or have hashes linking
to unknown events.

• gossip(H) – sends a set of events H to a random peer as was described above.

• topSort(H) – outputs a topological order of the set of events H, i.e., orders the events so that all directed
edges point to the right.

7

• see(E,E′,H) and strongSee(E,E′,H) – outputs True if E can (strongly) see E′ in hashgraph H and
False otherwise.

• uFam(H, r) – returns a set of famous witnesses of round r such that each node has at most one famous
witness (unique famous witness). We explain the meaning of rounds and being famous in the next
paragraph.

Consensus algorithm. Consensus protocol in full detail can be seen in Figure 2. It contains algorithms
main, decideOrder, divideRounds, and decideFame that we refer to in the following.

Each node executes the main algorithm which runs two loops in parallel: first loop constantly gossips the
local hashgraph H to random nodes and second loop deals with accepting gossips and achieving consensus.

We describe second loop in more detail. Firstly, node waits until it receives a gossip H′ and includes
correctly formed events to its local hashgraph H. Then it creates a new event E which can include some
new transaction data and adds it to H. After that, node runs three subprotocols to achieve consensus on
the order of events.

• divideRounds(H) – assigns each event in the hashgraph a round number and marks events that are
witnesses, i.e., first events of a round for a given node. More precisely, there can be N witnesses in
each round, one for each node. Events without ancestors get round number 1 and otherwise events get
round number r that is the maximum of their parents’ or r+ 1 if event can strongly see 2N/3 of round
r witnesses.

• decideFame(H) – runs a voting algorithm (locally) based on the knowledge of events that other nodes
are aware of to decide which witnesses are famous. Essentially a witness of round r is elected to be
famous if more than 2N/3 of the witnesses of round r + 1 can see it. Actual voting process is a bit
more complicated as can be seen on Figure 2.

• decideOrder(H) – assigns a round received number (which is different from round number) to each event.
Event E gets a round received number r if r is the smallest such round number that (i) witnesses up
to round r have their fame decided and E is ancestor of all (unique) famous round r witnesses. Round
received number is finally used to order the events. Ties are broken based on timestamps and still
remaining ties are broken based on whitened signatures. Whitened signature is the signature of the
event XORed with the signatures of all the unique famous witnesses in the received round.

3.3 Efficiency

Hashgraph white paper does not give precise complexity estimates. Clearly, the protocol in Figure 2 is
not fully optimized. Most likely the subprocedures decideFame, divideRounds, and decideOrder can be be
modified such that instead of constantly iterating over all the known events, algorithm updates the previous
state by just considering the newly received events. Hence, computational complexity might not become a
bottleneck.

Situation with communication complexity is less clear. Gossiping the full hashgraph each time (as in Figure 2)
will become very inefficient as the number of events grows. Obvious optimization is that Pi gossips to Pj

only the events it has not gossiped to Pj before. That would still mean that every node gossips each event
to every other node, hence we would get O(N2) communication complexity.

8

Table 1: Comparison of tangle and hashgraph
tangle hashgraph

security informal argument mathematical proof
patent no yes
implementation (mostly) open-source closed-source (at the time of writing)
access permissionless permissioned

4 Conclusion

We reviewed two DAG-based distributed ledgers that claim to overcome many of the challenges faced by
Bitcoin and other current blockchain protocols. Firstly we reviewed the IOTA DAG-based cryptocurrency.
White paper of IOTA however lacks in cryptographic rigor and it remains unclear which assumptions are
necessary and what precisely is the tangle (ledger of IOTA) achieving since there is no concrete security
definition. Moreover, as of first half of 2018, IOTA is still relying on a centralized coordinator to confirm
transaction. Secondly we looked at hashgraph consensus protocol of Swirlds distributed applications plat-
form. They are much more precise with security assumptions and have a security proof. However, hashgraph
consensus is foremost meant for the permissioned setting. Making it inconsistent with the ideology of cryp-
tocurrencies that want to get rid of trusted parties. Hence, it is unlikely to be an acceptable substitute for
Bitcoin, but it might be a reasonable solution for the corporate setting that they are currently aiming for.
We briefly reiterate the main properties of both systems in Table 1.

9

main:

Each Pi ∈ P does the following:

1. H ← ∅; //initialize hashgraph

//(a) and (b) run in parallel

2. (a) while True do gossip(H);

(b) while True do

i. receive gossip H′;
ii. H ← filter(H∪H′);

iii. construct new event E;

iv. H ← H∪ {E};
v. divideRounds(H);

vi. decideFame(H);

vii. decideOrder(H);

decideOrder(H):

1. For E ∈ topSort(H) do

(a) r ← min

r′ ∈ N |

(
∀E′ ∈ H : E′.rnd > r′

∨¬E′.w ∨ E′.f 6= ⊥
)∧(

∀E′ ∈ uFam(H, r′) : E ∈ δ−a (E′)
)
;

(b) If r 6= ⊥ do

i. E.rndr← r;

ii. S ←
{

E′ ∈ H | ∃Ef ∈ uFam(H, r) : E′ ∈ δ−sa(Ef)∧
E ∈ δ−a (E′) ∧ E′.sp 6= E

}
;

iii. E.ts← median({E′.ts | E′ ∈ S});
2. ReturnH sorted first by rndr, remaining ties by ts, and still remaining

ties by whitened signatures

divideRounds(H):

For E ∈ topSort(H) do

1. If δ−(E) = ∅ do r ← 1;

Else r ← maxE′∈δ−(E) E
′.rnd;

2. S ←
{

E′ ∈ H | E′.rnd = r ∧ E′.w∧
strongSee(E,E′)

}
;

3. If |S| ≥ 2N/3 do E.rnd← r + 1; Else E.rnd← r;

4. E.w← (E.sp = ⊥) ∨ (E.rnd > E.sp.rnd);

decideFame(H):

For E ∈ topSort(H) do

1. E.f ← ⊥;

2. For E′ ∈ topSort(H) do

If E.w ∧ E′.w ∧ E′.rnd > E.rnd do

(a) d← E′.rnd− E.rnd;

(b) S ←
{

E∗ ∈ H | E∗.rnd = E′.rnd− 1
∧E∗.w ∧ strongSee(E′, E∗)

}
;

(c) t0 ← |{E∗ ∈ S | E∗.vE = 0} |;
(d) t1 ← |{E∗ ∈ S | E∗.vE = 1} |;
(e) v ← t1 ≥ t0; //vote

(f) t← |{E∗ ∈ S | E∗.vE = v} |
(g) If d = 1 do E′.vE ← see(E′, E);

Else

i. If d mod c > 0 do

A. E′.vE ← v;

B. If t > 2N/3 do E.f ← v;

Else

A. If t > 2N/3 do E′.vE ← v;

Else E′.vE ← middle bit of E′.sig;

Figure 2: Full description of the hashgraph consensus algorithm

References

[Bai16] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault toler-
ance. https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf, May 2016. Accessed:
31.03.2018. 1, 3, 3

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In Proceedings of the Second Annual ACM Symposium on Principles of
Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983. ACM. 3

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew
Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer. On
scaling decentralized blockchains. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan

10

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data Security,
pages 106–125, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. 1

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186,
Berkeley, CA, USA, 1999. USENIX Association. 3

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, April 1988. 3

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains
of variable difficulty. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages
291–323, 2017. 1

[HNDV17] Ethan Heilman, Neha Narula, Thaddeus Dryja, and Madars Virza. Iota vulnerability report:
Cryptanalysis of the curl hash function enabling practical signature forgery attacks on the iota
cryptocurrency. https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md,
2017. Accessed: 31.03.2018. 2.2

[IOT] Iota documentation. https://dev.iota.org. Accessed: 25.03.2018. 1, 2

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, pages 357–388, 2017. 1

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998. 3

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In
Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography and Data Security, pages
528–547, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. 1

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptology
— CRYPTO’ 89 Proceedings, pages 218–238, New York, NY, 1990. Springer New York. 2

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP ’13, pages 397–411, Washington, DC, USA, 2013. IEEE Computer Society. 1

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,. http://bitcoin.org/

bitcoin.pdf, 2009. 1

[OM14] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint. In 25th IET Irish Signals
Systems Conference 2014 and 2014 China-Ireland International Conference on Information and
Communications Technologies (ISSC 2014/CIICT 2014), pages 280–285, June 2014. 4

[Pop17] Serguei Popov. The tangle. https://iota.org/IOTA_Whitepaper.pdf, 2017. Accessed:
31.03.2018. 1, 2, 2.1

[Reb17] Joseph Rebstock. Replay attacks in iota. https://github.com/joseph14/

iota-transaction-spammer-webapp/blob/master/replay%20attack.md, 2017. Accessed:
31.03.2018. 2.2

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, December 1990. 3

11

https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://dev.iota.org
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://iota.org/IOTA_Whitepaper.pdf
https://github.com/joseph14/iota-transaction-spammer-webapp/blob/master/replay%20attack.md
https://github.com/joseph14/iota-transaction-spammer-webapp/blob/master/replay%20attack.md

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable cryp-
tocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159, 2016. 1

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In
Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography and Data Security, pages
507–527, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. 1

[SZ18] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable blockdag protocol. Cryptology
ePrint Archive, Report 2018/104, 2018. https://eprint.iacr.org/2018/104. 1

[Wal17] Eric Wall. Iota is centralized. https://medium.com/@ercwl/

iota-is-centralized-6289246e7b4d, 2017. Accessed: 31.03.2018. 2.2

12

https://eprint.iacr.org/2018/104
https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d
https://medium.com/@ercwl/iota-is-centralized-6289246e7b4d

	Introduction
	IOTA
	Security
	Criticism

	Swirlds
	Setting and Assumptions
	Protocol Description
	Efficiency

	Conclusion

